

Comprehensive In-Vitro Flow Model Testing Development

Steven Schwartz II, Milo Gubler, Mason Minitti, Muath Nasrallah

Project Description

- The overall objective of this project is to develop a comprehensive flow model capable of medical device testing.
- The project is sponsored by Dr. Tim Becker, the Principal Investigator of the Bioengineering Devices Lab (BDL) at NAU.
- The main deliverables:
 - To create a pump system capable of cleaning the model interior from 3D support material.
 - Improve the In-Vitro benchtop model with additional parameters and system modifiers.

Background

- The Bioengineering Devices Lab at NAU is a lab that focuses on aneurysm treatment.
- Aneurysm: bulging or "ballooning" of an artery caused by weakened arterial walls.
- 50% are fatal, 66% of survivors suffer permanent neurological deficits, 15% die before reaching a hospital. [1]

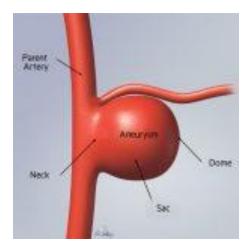


Figure 1: Aneurysm (bafound.org)

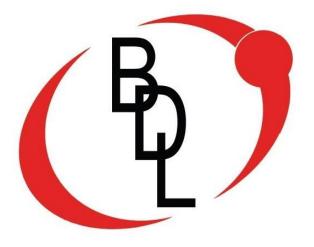


Figure 2: BDL Logo

Benchmarking

Most cleaning systems for there are a variety of different physiological conditions.

are proprietary, however, of flow models to simulate

Figure 3. Mentice© Simulation Device

Figure 4. BioModex© 3d print Flow Device

Figure 5. United Biologics© Silicone model

Quality-Function Deployment [5]

- CR vs ER
- ER correlations
- Benchmarking
- Technical Importance Analysis
- Target Values

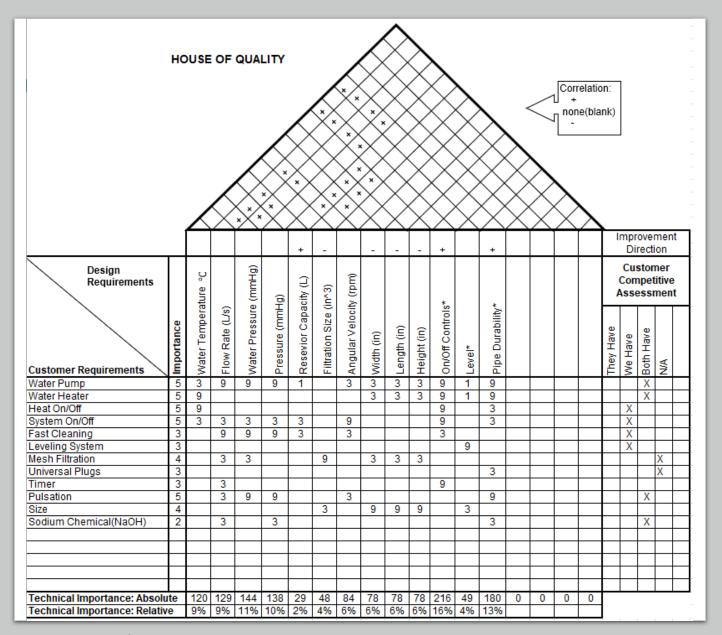


Figure 6: Cleaning System QFD

Literature Review

Brain Aneurysm Foundation

- Explains types of brain aneurysms and potential for long-term effects following treatment.
- Team Leader (Steven) and Test Engineer (Milo) need the information to ensure accuracy during the refinement process.

In vitro vessel models

- Outlines material testing and properties of 3D printed material to replicate human blood vessels.
- Financial manager (Mason) and Manufacturing Engineers (Muath and Milo) need proper understanding for parts and material purchasing and design for proper fitting and model safety.

Customer Requirements

 To develop an effective system, we were given the following requirements:

For the Cleaning System:

- Pressure/Temperature Gauges
- Fluid Heating System
- Mesh Filter
- Water Reservoir
- Timer
- Pulsatile Pump

For the Benchtop Model:

- A fail-safe switch mechanism at critical pressure threshold.
- LabVIEW software to acquire pressure and flow data.
- Similar Physiological conditions to human vasculature (Temperature, Viscosity, Pressure, Flow Rate)

Schedule

- As of this moment we are on schedule.
- A comprehensive overview can be found on the Gantt Chart.

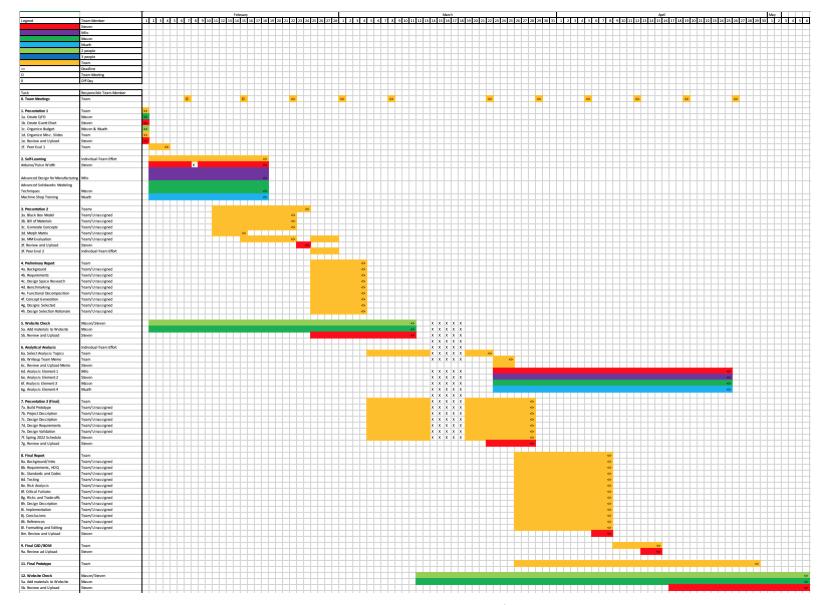


Figure 7. Team Gantt Chart

Budget

- Total Budget: \$1500
- Spent to date: \$0
- Anticipated expenses:
 - Material/frame for mounting equipment: < \$400
 - Pulsating Pump: \$70 \$200
 - Heating element/hot plate: Provided
 - Filament for universal connectors: \$1.25/gram
 - Miscellaneous Gauges (Pressure/Temperature): Provided
 - Electronics: \$100
 - Contingency Budget: \$500

References

- [1] Bafound.org. 2022. Statistics and Facts Brain Aneurysm Foundation. [online] Available at: [Accessed 1 February 2022].
- [2] M. AB, "Medical Simulators for Endovascular Therapies | Patient Simulators," www.mentice.com. https://www.mentice.com/simulators (accessed Feb. 01, 2022).
- [3] "Biomodex," *Compass magazine*. https://compassmag.3ds.com/special-reports/the-personalized-health-revolution/biomodex/ (accessed Feb. 01, 2022).
- [4] "3D Stabilizing Platforms | United Biologics." https://unitedbiologics.com/product/pap00v01_3d-pelvis_acrylic_platform/ (accessed Feb. 01, 2022).
- [5] Cogswell, P.M., Rischall, M.A., Alexander, A.E. *et al.* Intracranial vasculature 3D printing: review of techniques and manufacturing processes to inform clinical practice. *3D Print Med* **6**, 18 (2020). https://doi.org/10.1186/s41205-020-00071-8

Questions/Feedback?